MATH 521A: Abstract Algebra

Preparation for Exam 3

1. Prove that $f(x)=x^{3}+9 x^{2}+8 x+12508477$ is irreducible in $\mathbb{Q}[x]$.
2. Prove that $f(x)=x^{4}+x^{3}+x^{2}+x+1$ is irreducible in $\mathbb{Q}[x]$.
3. Factor $f(x)=x^{5}+2 x^{3}+2 x^{2}-x+3$ into irreducibles in $\mathbb{Z}_{5}[x]$.
4. Factor $f(x)=x^{5}+x^{4}+2 x^{3}+2 x^{2}+2 x+1$ into irreducibles in $\mathbb{Z}_{5}[x]$.
5. Set $f(x)=x^{n}-x^{n-2} \in F[x]$. Carefully find all divisors of $f(x)$ in $F[x]$.
6. Set $f(x)=x^{5}+3 x^{4}+2 x^{3}+x^{2}+3 x+2, g(x)=x^{4}+x^{2}+1$, both in $\mathbb{Z}_{5}[x]$. Use the extended Euclidean algorithm to find $\operatorname{gcd}(f, g)$ and to find polynomials $a(x), b(x)$ such that $\operatorname{gcd}(f(x), g(x))=a(x) f(x)+b(x) g(x)$.
7. Let $f(x), g(x) \in R[x]$. Prove that $\operatorname{deg}(f+g) \leq \max \{\operatorname{deg}(f), \operatorname{deg}(g)\}$.
8. Let R be an integral domain. Prove that all linear polynomials in $R[x]$ are irreducible, if and only if R is a field.
9. Let $f(x), g(x), h(x) \in F[x]$. Suppose that $f(x) \mid g(x) h(x)$ and $\operatorname{gcd}(f(x), g(x))=1$. Prove that $f(x) \mid h(x)$.
10. Let p be an odd prime. Prove there is at least one $a \in \mathbb{Z}_{p}$ such that $x^{2}-a$ is irreducible in $\mathbb{Z}_{p}[x]$.
11. If $f(x) \in F[x]$ is nonconstant and monic, prove that we may always write $f(x)$ as the product of irreducible monic polynomials.
12. We call a polynomial in $F[x]$ cinom if its constant coefficient is 1. If $f(x) \in F[x]$ is nonconstant and cinom, prove that we may always write $f(x)$ as the product of irreducible cinom polynomials.
13. Prove or disprove: If $f(x) \in F[x]$ is nonconstant, and both monic and cinom, then we may always write $f(x)$ as the product of irreducible polynomials that are both monic and cinom.
14. Let R be an integral domain. Let $f(x), g(x) \in R[x]$. Recall that we call f, g associates if there is some unit $u \in R$ such that $f(x)=u g(x)$. Prove that f, g are associates if and only if they divide each other (i.e. $f(x) \mid g(x)$ and $g(x) \mid f(x)$).
15. Let R be an integral domain. In $R[x]$, prove that "is an associate of" is an equivalence relation.
